
Received:

Revised:

Accepted:

Published:

Citation: Pleşa, M.I.; Gheorghe, M.;

Ipate, F. Neural Key Agreement

Protocol with Extended Security. Appl.

Sci. 2025, 1, 0. https://doi.org/

Copyright: © 2025 by the authors.

Submitted to Appl. Sci. for possible

open access publication under the

terms and conditions of the Creative

Commons Attri- bution (CC BY)

license (https://creativecommons.

org/licenses/by/4.0/).

Article

Neural Key Agreement Protocol with Extended Security
Mihail-Iulian Pleşa 1 , Marian Gheorghe 2 and Florentin Ipate 1*

1 Department of Computer Science, University of Bucharest, Academiei 14, Bucharest, 010014, Romania
2 School of Electrical Engineering and Computer Science, University of Bradford, Richmond Rd, Bradford, BD7

1DB, UK
* Correspondence: mihail-iulian.plesa@s.unibuc.ro;

Abstract 1

Key agreement protocols based on neural synchronization with Tree Parity Machines 2

(TPMs) offer promising security advantages: they do not rely on trapdoor functions, mak- 3

ing them resistant to quantum attacks, and they avoid the need for specialized hardware 4

required by quantum-based schemes. Nevertheless, these protocols face a significant vul- 5

nerability: the large number of public message exchanges required for synchronization 6

increases the risk that an attacker, acting as a Man-in-the-Middle, can successfully syn- 7

chronize their own TPMs with those of the legitimate parties and ultimately recover the 8

shared key. Motivated by the need to reduce this risk, we propose a novel probabilistic 9

protocol that enables two parties to securely estimate the size of the shared key during 10

intermediate steps, without revealing any key material. This estimation allows the protocol 11

to terminate as soon as sufficient key material has been established, thereby reducing the 12

number of synchronization rounds and limiting the opportunity for an attacker to synchro- 13

nize. We integrate our estimation mechanism into a neural key agreement protocol and 14

evaluate its performance and security, demonstrating improved efficiency and enhanced 15

resistance to attacks compared to existing approaches. The implementation is available at 16

https://github.com/miiip/Neural-Key-Agreement-. 17

Keywords: Neural cryptography; Key agreement; Tree Parity Machine; Cryptography 18

1. Introduction 19

Key agreement protocols are fundamental to the security of modern cryptographic 20

systems. From securing web traffic via the TLS protocol to enabling end-to-end encrypted 21

messaging platforms such as Signal, the majority of cryptographic applications depend on 22

robust key agreement mechanisms [1]. The primary objective of these protocols is to estab- 23

lish a shared secret between two or more parties over potentially insecure communication 24

channels. 25

Traditionally, most key agreement protocols rely on hard number-theoretic problems, 26

including the discrete logarithm problem (DLP), the Diffie-Hellman problem (DHP), the 27

decisional Diffie-Hellman problem (D-DHP), and the integer factorization problem [2]. A 28

significant drawback of these approaches is their susceptibility to attacks by large-scale 29

quantum computers. Shor’s seminal work [3] introduced a quantum algorithm capable of 30

solving both the DLP and the factorization problem in polynomial time. Although quantum 31

computers of sufficient scale do not yet exist to threaten widely deployed cryptographic 32

protocols, it is widely anticipated that such technology will emerge in the foreseeable 33

future [4]. 34

Version November 30, 2025 submitted to Appl. Sci. https://doi.org/10.3390/app1010000

https://doi.org/10.3390/app1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0001-5954-7199
https://github.com/miiip/Neural-Key-Agreement-
https://doi.org/10.3390/app1010000

Version November 30, 2025 submitted to Appl. Sci. 2 of 17

In response to these challenges, three principal alternatives to conventional key agree- 35

ment protocols have been developed: 36

1. Post-quantum key agreement protocols, 37

2. Quantum key agreement protocols, 38

3. Neural key agreement protocols. 39

Post-quantum key agreement protocols are based on mathematical problems for which 40

no efficient solution is known on either classical or quantum computers [5]. However, these 41

schemes often involve computationally intensive operations over finite fields, which can 42

hinder their practical deployment [6]. Quantum key agreement protocols, on the other 43

hand, leverage quantum phenomena such as wave function collapse, entanglement, and 44

the no-cloning theorem [7]. While these protocols provide strong security guarantees even 45

against quantum adversaries, they require specialized hardware that is both costly and 46

challenging to maintain. 47

Neural key agreement protocols, first introduced in [8], offer an alternative to both 48

quantum and post-quantum approaches. The core concept involves synchronizing the 49

weights of two neural networks, specifically Tree Parity Machines (TPMs), through iterative 50

updates between the communicating parties. The resulting synchronized weights are then 51

used as a shared secret key. Unlike post-quantum protocols, whose security is predicated 52

on mathematical problems that may eventually be solved, or quantum protocols, which 53

necessitate dedicated and expensive hardware, neural key agreement protocols do not rely 54

on such assumptions or infrastructure. 55

A central challenge in neural key agreement protocols is the large number of rounds 56

typically required for two parties to achieve full synchronization of their TPMs. In existing 57

protocols, the process continues until the entire set of weights is identical, at which point 58

the shared key is established. However, this approach leads to a substantial communication 59

overhead and, more critically, increases the risk that an adversary can synchronize their 60

own TPM with those of the legitimate parties by observing the public exchanges [9]. This 61

vulnerability is exacerbated as the number of rounds grows, since each additional round 62

provides further opportunities for an attacker to align their weights. 63

It is important to note that the weight vector of a TPM generally contains far more 64

elements than the length required for a standard cryptographic key (e.g., 128 bits). This 65

observation suggests that it is not necessary to wait for complete synchronization; the 66

protocol could be terminated once a sufficient number of weights have been aligned to 67

provide the desired level of security. Early termination would not only reduce the number 68

of communication rounds—thereby improving efficiency—but also significantly limit the 69

window in which an attacker might succeed in synchronizing their own TPM. 70

The main obstacle to implementing early termination is the lack of a secure mechanism 71

for the parties to determine the extent of synchronization without revealing any information 72

about the actual weights. Without such a mechanism, the parties cannot safely assess 73

whether enough key material has been established to halt the protocol. To address this 74

limitation, we introduce a privacy-preserving comparison protocol that enables the two 75

parties to securely estimate the number of synchronized weights after each round, without 76

disclosing the weight values themselves. By integrating this mechanism into the neural key 77

agreement protocol, we enable secure early termination based on the amount of shared key 78

material, thereby enhancing both the efficiency and the security of the protocol. 79

1.1. Related Work 80

The concept of employing neural synchronization for key agreement protocols was 81

first introduced by Kanter et al. [8], who proposed a method enabling two parties to syn- 82

chronize the weights of their respective three-layer neural networks, known as Tree Parity 83

Version November 30, 2025 submitted to Appl. Sci. 3 of 17

Machines (TPMs), over a public channel. This approach was designed to prevent any 84

third party from reconstructing the weights, even with access to all exchanged information. 85

Shortly thereafter, Klimov et al. [9] identified three classes of attacks against this protocol, 86

demonstrating through extensive experimentation that a geometric attack could allow an 87

adversary to recover up to 90% of the shared key. In response to these vulnerabilities, Mislo- 88

vaty et al. [10] provided experimental evidence that increasing the range of possible weight 89

values can enhance the protocol’s security. Nevertheless, Shacham et al. [11] subsequently 90

introduced a more advanced attack that remains effective even when the weight range is 91

expanded, underscoring the persistent challenges in securing neural synchronization-based 92

protocols. 93

To further strengthen the security of neural key agreement protocols, a variety of 94

alternative strategies have been explored [12]. For instance, Ruttor et al. [13] proposed 95

dynamically generating TPM inputs based on the current internal state of the network, 96

thereby increasing the unpredictability of the synchronization process. In a different 97

approach, Allam et al. [14,15] developed algorithms that perturb the TPM output, making 98

it more difficult for adversaries to reconstruct the original information while still enabling 99

legitimate parties to achieve synchronization. Although these methods enhance security 100

under the assumption that an eavesdropper can intercept all public communications, they 101

often result in increased synchronization times. 102

Recent research has also focused on novel TPM architectures and input representations. 103

Stypinski et al. [16] introduced nonbinary input values to accelerate protocol execution, 104

while Jeong et al. [17] demonstrated that vector-valued inputs can further improve both 105

efficiency and security. Similarly, Dong et al. [18] investigated the use of complex-valued 106

inputs in TPMs. The security implications of nonbinary inputs were systematically analyzed 107

by Stypinski et al. [19], providing deeper insights into the robustness of these protocols. In 108

addition to architectural innovations, parameter selection for TPMs has been systematically 109

studied by Salguero et al. [20], who analyzed various parameter sets and reported their 110

effects on both synchronization time and security. 111

Beyond theoretical advancements, several studies have examined practical applica- 112

tions of neural cryptography. For example, Sarkar et al. [21] utilized TPM-based mecha- 113

nisms to enable secure access to medical data, while Sarkar et al. [22] developed a chaos- 114

based neural synchronization method for secret sharing within a public-key framework. 115

Gupta et al. [23] applied neural cryptography to the secure distribution of image shares. 116

Additionally, Plesa et al. [24] proposed a TPM architecture based on spiking neural net- 117

works, evaluating its performance and resilience to man-in-the-middle attacks. Notably, the 118

efficiency gains of this protocol are most pronounced when implemented on neuromorphic 119

hardware [25]. 120

Table 1 provides a comparison of the main TPM-based key agreement protocols, 121

highlighting their core ideas, advantages, and limitations relative to our proposal. 122

Version November 30, 2025 submitted to Appl. Sci. 4 of 17

Table 1. Comparison of TPM-based key agreement protocols.

Protocol Core Idea /
Modification Advantages

Limitations /
Comparison to Our

Protocol

Kanter et al. [8]

Original TPM
synchronization

protocol over
public channel

Simple, does not
rely on trapdoor

functions

Vulnerable to
geometric attacks;

no early
termination
mechanism

Mislovaty et al. [10]
Increased weight
range to improve

security

Reduces success
rate of some attacks

Still vulnerable to
advanced attacks;

no protocol-level fix

Ruttor et al. [13]
Dynamic input

generation based
on internal state

Increases
unpredictability,

improves security

Increases
synchronization

time; more complex
implementation

Allam et al. [14,15]
Output

perturbation to
confuse adversaries

Harder for attacker
to reconstruct

weights

Slower
synchronization;

more rounds
required

Stypiński et al. [16] Nonbinary input
vectors for TPMs

Faster
synchronization,

improved efficiency

Security depends
on parameters;

geometric attacks
still possible

Jeong et al. [17] Vector-valued
inputs for TPMs

Improves efficiency
and security

Implementation
complexity; not
immune to all

attacks

Dong et al. [18] Complex-valued
TPMs

Novel input
representation;

potential for higher
security

Security analysis
limited; practical

deployment
unclear

Salguero et al. [20]
Parameter

optimization for
TPMs

Systematic study of
security vs.

efficiency trade-offs

Does not address
protocol-level
vulnerabilities

Plesa et al. [24] Spiking neural
network TPMs

Improved efficiency
on neuromorphic

hardware

Security against
geometric attacks
not fully resolved

Our Protocol

Privacy-preserving
synchronization
check with early

termination

Significantly
reduces rounds;

effectively
mitigates geometric

attacks

Readily integrates
with existing TPM
frameworks; offers
promising potential

for practical
deployment

1.2. Our Contribution 123

The primary contributions of this study are summarized as follows: 124

1. We introduce a novel probabilistic algorithm that allows two parties engaged in a 125

neural key agreement protocol to privately compute the proportion of synchronized 126

weights at intermediate stages, without revealing the actual weight values. 127

2. Leveraging this algorithm, we develop a new key agreement protocol based on the 128

non-binary TPM model proposed by [16]. 129

Version November 30, 2025 submitted to Appl. Sci. 5 of 17

3. We perform a comprehensive security analysis of our protocol, evaluating its resilience 130

against both naive and geometric attacks, and benchmark its robustness against the 131

protocol presented in [16]. 132

4. We empirically demonstrate the efficiency of our protocol by analyzing its complexity 133

in terms of the number of rounds required for synchronization, as a function of the 134

number of hidden units in the TPM and the weight range, and compare these results 135

with those of [16]. 136

The remainder of the paper is organized as follows. Section 2 introduces the Tree Parity 137

Machine (TPM) model, providing the necessary background as described in [16]. Our main 138

technical contributions begin in Section 3, where we present our novel algorithm for privacy- 139

preserving weight comparison. Section 4 builds on this by detailing our proposed neural 140

key agreement protocol, which integrates the privacy-preserving mechanism. In Section 5, 141

we provide a comprehensive experimental evaluation of our protocol, analyzing both its 142

security and efficiency compared to existing approaches. Finally, Section 6 concludes the 143

paper and discusses directions for future research. 144

2. Tree Parity Machine 145

The Tree Parity Machine (TPM) model utilized in this study, as originally introduced 146

by [16], is a three-layer neural network consisting of an input layer, a hidden layer, and 147

an output layer. The input layer is partitioned into K groups, each comprising N neurons. 148

Each neuron within a group is connected to a corresponding neuron in the hidden layer, 149

and all hidden neurons are collectively connected to a single output neuron. 150

The network inputs, denoted by xji for 1 ≤ i ≤ N and 1 ≤ j ≤ K, are integer values 151

constrained by −M ≤ xji ≤ M, where M ∈ Z. The synaptic weights connecting the input 152

and hidden layers, represented as wji, are also integers, bounded by −L ≤ wji ≤ L, with 153

L ∈ Z. 154

The activation of each hidden neuron, yj, is computed by applying the sign function 155

to the weighted sum of its inputs: 156

yj = σ

(
N

∑
i=1

xjiwji

)
, (1)

where σ(x) denotes the sign function. 157

The output neuron, denoted by O, calculates the product of the activations of all 158

hidden neurons: 159

O =
K

∏
j=1

yj (2)

The weights of the network are updated according to the Hebbian learning rule, as 160

described in [26]: 161

wji ← wji + O xji Φ
(
yj, O

)
, (3)

where 162

• wji is the weight of the i-th input to the j-th hidden neuron, 163

• xji is the corresponding input value, 164

• yj is the output of the j-th hidden neuron, 165

• O is the global output of the TPM, 166

• Φ(a, b) is the indicator function: 167

Φ(a, b) =

1, if a = b,

0, otherwise.

Version November 30, 2025 submitted to Appl. Sci. 6 of 17

Figure 1 illustrates the structure of the TPM. 168

Figure 1. The structure of a Tree Parity Machine.

3. Weights Comparison Algorithm 169

Consider two parties, P1 and P2, participating in a neural key agreement protocol. 170

Let wP1 and wP2 denote the respective KN-dimensional weight vectors of their TPMs. The 171

proposed comparison protocol, PrivComp, enables the parties to privately compute not 172

only the number of synchronized weights, but also to identify which specific weights have 173

been synchronized, without revealing the actual values of the weights to any external 174

observer. This is achieved under the honest-but-curious security model, where both parties 175

are assumed to follow the protocol correctly, but an adversary may passively intercept 176

all messages exchanged during PrivComp in an attempt to infer the secret weights. The 177

protocol proceeds as follows: 178

Initially, P1 constructs a vector d1 by flattening its weight matrix wP1 , and generates a 179

decoy vector d2 of the same length, where each entry is independently sampled from the 180

range −L ≤ d2
i ≤ L. For each position 1 ≤ i ≤ KN, P1 randomly decides whether to swap 181

the values of d1
i and d2

i , thereby obscuring the correspondence between the actual weights 182

and the decoy elements. After performing these random swaps, P1 transmits both d1 and 183

d2 to P2. 184

Upon receiving the vectors, P2 compares each of its own weights with the correspond- 185

ing entries in d1 and d2. Specifically, P2 constructs a binary vector mask, where maski = 1 if 186

wP2
i matches either d1

i or d2
i , and maski = 0 otherwise. The Hamming weight S of the mask 187

vector, representing the number of matches, is then computed. If S exceeds a predefined 188

security threshold τ, P2 returns the mask vector to P1; otherwise, the protocol terminates 189

with output ⊥. 190

An adversary intercepting the vectors sent by P1 cannot deduce the actual weights, as 191

the random swapping introduces 2KN possible configurations. Although the mask vector 192

could potentially reduce the brute-force search space by indicating positions of possible 193

matches, the threshold τ ensures that an attacker must still consider at least 2τ possibilities, 194

thereby preserving the desired level of security. 195

The underlying intuition is that, due to the synchronization process, the probability 196

that P2 observes a match at position i without the actual weights being synchronized is 197

low. Consequently, if maski = 1, it is highly likely that the corresponding weights are 198

synchronized. 199

The output of the PrivComp protocol is the common set weights, or ⊥ if the number of 200

matches is below the threshold τ. 201

The following theorems establish the correctness and security of our construction. 202

Version November 30, 2025 submitted to Appl. Sci. 7 of 17

1. Decoy Generation: P1 initializes d1 with its actual weights wP1 and generates a
decoy vector d2, where each entry is sampled uniformly from the weight range:

d1
i ← wP1

i , ∀i ∈ {1, . . . , KN} (4)

d2
i ∼ Unif{−L,−L + 1, . . . , L}, ∀i ∈ {1, . . . , KN} (5)

2. Random Swapping and Transmission: P1 generates a random binary vector sw,
where each entry is sampled uniformly from {0, 1}. For each index i, if swi = 1,
the entries d1

i and d2
i are swapped. Both vectors are then sent to P2:

swi ∼ Unif{0, 1}, ∀i ∈ {1, . . . , KN} (6)

(d1
i , d2

i)← (d2
i , d1

i), if swi = 1 (7)

P1 −→ P2 : (d1, d2) (8)

3. Comparison: P2 compares each of its weights wP2
i with d1

i and d2
i , constructing

the mask vector:

mask[i] =

{
1, if wP2

i ∈ {d
1
i , d2

i }

0, otherwise
∀i ∈ {1, . . . , KN} (9)

4. Threshold Verification and Response: P2 computes S = ∑KN
i=1 mask[i]. If S > τ,

P2 returns the mask vector to P1:

If S > τ, P2 −→ P1 : mask (10)

5. Output: If S > τ, both parties output the set of synchronized weights:

wc = {wP1
i | mask[i] = 1} = {wP2

i | mask[i] = 1}.

Otherwise, both parties output ⊥.

Figure 2. The PrivComp protocol for privacy-preserving weight comparison.

Theorem 1 (Correctness). Let wP1 , wP2 ∈ {−L, . . . , L}KN denote the weight vectors of parties 203

P1 and P2. Let d1, d2 be constructed as specified in the protocol, and let mask ∈ {0, 1}KN be the 204

output of P2. Then, for any position i ∈ {1, . . . , KN}: 205

1. If wP1
i ̸= wP2

i , the probability that maski = 1 (i.e., a false positive) is at most 2
2L+1 . 206

2. If wP1
i = wP2

i , then maski = 1 with probability 1 (i.e., a true positive). 207

Proof. Fix any position i ∈ {1, . . . , KN}. 208

Case 1: wP1
i ̸= wP2

i (False Positive Probability). 209

According to the protocol, for each index i, one of {d1
i , d2

i } contains the true value wP1
i , 210

while the other contains a randomly generated decoy. The assignment is governed by the 211

swap bit swi: if swi = 0, then d1
i = wP1

i and d2
i is a decoy; if swi = 1, then d2

i = wP1
i and d1

i 212

is a decoy. 213

Let r be the random decoy sampled uniformly from {−L, . . . , L}. 214

There are two cases, each occurring with probability 1/2: 215

• With probability 1/2, (d1
i , d2

i) = (wP1
i , r). 216

• With probability 1/2, (d1
i , d2

i) = (r, wP1
i). 217

In both cases, wP2
i can match d1

i or d2
i only if wP2

i = r (since wP1
i ̸= wP2

i by assumption). 218

Version November 30, 2025 submitted to Appl. Sci. 8 of 17

Since r is uniformly distributed over 2L + 1 values, the probability that r = wP2
i is 219

1
2L+1 . 220

There are two opportunities (either d1
i or d2

i), so by the union bound, the probability 221

that wP2
i matches either d1

i or d2
i is at most 2 · 1

2L+1 = 2
2L+1 . 222

Case 2: wP1
i = wP2

i (True Positive Probability). 223

Regardless of the value of swi, either d1
i or d2

i will be equal to wP1
i . 224

Therefore, wP2
i will always match at least one of d1

i or d2
i , so maski = 1 with probability 225

1. 226

Theorem 2 (Security). Let P1 send the vectors d1, d2 ∈ {−L, . . . , L}KN to P2 as specified in the 227

protocol, where each position is randomly swapped. Let mask ∈ {0, 1}KN be the binary vector sent 228

by P2 to P1 only if the number of 1s in mask is at least τ. Then, for any eavesdropper intercepting 229

the communication: 230

1. Before mask is sent, the eavesdropper must consider all 2KN possible swap configurations to 231

recover the real weights of P1. 232

2. After mask is sent, the eavesdropper must consider at least 2τ possible swap configurations. 233

In both cases, the attacker faces an exponential search space in the relevant parameter. 234

Proof. (1) Security Before mask is Sent: 235

When P1 sends d1 and d2, each entry is either the real weight or a random decoy, 236

determined by the secret swap vector sw ∈ {0, 1}KN . For each position i, the attacker does 237

not know whether d1
i or d2

i is the real weight. Thus, to recover the real weight vector, the 238

attacker must guess the entire swap vector sw, which has 2KN possible configurations. 239

(2) Security After mask is Sent: 240

When P2 sends the mask vector mask, the attacker learns which positions i have a 241

match with P2’s weights. For each position i where maski = 1, the real weight of P1 could 242

be either d1
i or d2

i . For positions where maski = 0, the attacker knows neither value is the 243

real weight, so these positions can be ignored in the brute-force search. 244

Let S be the number of bits of 1 in the mask. The attacker must guess the swap bits 245

for these S positions, resulting in 2S possible configurations. By protocol, S ≥ τ, so the 246

brute-force complexity is at least 2τ . 247

Conclusion: In both cases, the attacker must consider an exponential number of 248

possible swap configurations, either 2KN or at least 2τ , to recover the real weights. This 249

ensures the protocol’s security against brute-force attacks by an eavesdropper. 250

4. Neural Key Agreement Protocol 251

In this section, we present the neural key agreement protocol, which incorporates our 252

privacy-preserving comparison protocol, PrivComp, to securely determine the extent of 253

synchronization between the parties. The protocol is detailed in Figure 3. All computa- 254

tions, including weight updates, are performed within the range [−L, L] with appropriate 255

clipping. 256

The proposed protocol follows the general architecture of neural key agreement 257

schemes, as outlined in [8,16]. Its primary innovation, however, is the integration of a 258

privacy-preserving comparison protocol, which allows the participating parties to terminate 259

the synchronization process as soon as a sufficient number of weights have been aligned. 260

This enhancement not only increases the protocol’s efficiency by reducing the number of 261

required rounds, but also significantly improves its security. As noted in [9], the probability 262

that an adversary can successfully synchronize a third TPM with those of the legitimate 263

parties grows with the number of rounds observed. By minimizing unnecessary rounds, 264

the protocol effectively mitigates this risk. 265

Version November 30, 2025 submitted to Appl. Sci. 9 of 17

Regarding correctness, it has been established in [8] that two TPMs will eventually 266

synchronize, as the process can be modeled as a random walk within a finite weight space. 267

Each party updates its weights only when the outputs of the corresponding hidden neurons 268

are identical. This selective update rule ensures that the weight vectors do not diverge, but 269

instead gradually converge towards synchronization. In essence, updates are performed 270

exclusively under conditions that promote alignment, thereby guaranteeing convergence 271

of the protocol. 272

There are two principal types of attacks on neural key agreement protocols, both 273

of which are relevant in the context of the honest-but-curious adversarial model. In this 274

model, the adversary is assumed to have full access to all messages exchanged over the 275

public channel and may attempt to infer secret information by passively observing the 276

protocol, but does not deviate from the prescribed protocol steps or actively interfere with 277

the communication. 278

In a naive attack (illustrated in Figure 4), the honest-but-curious adversary attempts 279

to synchronize its own TPM with those of the legitimate parties by simply following the 280

same protocol as the participants. The success of such an attack is directly influenced 281

by the number of synchronization rounds observed, which highlights the importance of 282

minimizing protocol duration to limit the adversary’s opportunity for synchronization. 283

In a geometric attack, the adversary leverages additional information from the protocol 284

execution to improve its chances of synchronization, even when its own output does not 285

match those of the legitimate parties. Specifically, when the attacker’s output differs, the 286

adversary identifies the hidden neuron whose associated weights are closest to the input 287

hyperplane and selectively flips its activation. This advanced technique, introduced by [9], 288

allows the honest-but-curious adversary to make progress toward synchronization despite 289

output mismatches, thereby posing a more significant threat than the naive attack. The 290

geometric attack is detailed in Figure 5. 291

Version November 30, 2025 submitted to Appl. Sci. 10 of 17

1. Parameter Setup and Initialization: The parties P1 and P2 agree on the protocol
parameters K, N, M, L, and independently initialize their TPM weights uniformly
at random:

wP1
ji ∼ Unif{−L, . . . , L}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}, (11)

wP2
ji ∼ Unif{−L, . . . , L}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (12)

2. Input Generation: Both parties agree on a common random input vector x, either
by exchanging the vector directly or by sharing a common random seed:

xji ∼ Unif{−M, . . . , M}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (13)

3. Computation and Output Exchange: Each party computes the activations of the
hidden neurons and the TPM output, then exchanges the output value with the
other party:

yP1
j = σ

(
N

∑
i=1

xjiw
P1
ji

)
, ∀j ∈ {1, . . . , K}, (14)

yP2
j = σ

(
N

∑
i=1

xjiw
P2
ji

)
, ∀j ∈ {1, . . . , K}, (15)

OP1 =
K

∏
j=1

yP1
j , (16)

OP2 =
K

∏
j=1

yP2
j , (17)

OP1 ↔ OP2 . (18)

4. Weight Update: If the outputs coincide, each party updates its weights according
to the Hebbian learning rule, but only for those hidden neurons whose activation
matches the global output:

If OP1 = OP2 = O, then (19)

wP1
ji ← wP1

ji + O xji Φ(yP1
j , O), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}, (20)

wP2
ji ← wP2

ji + O xji Φ(yP2
j , O), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (21)

5. Synchronization Check and Output: Both parties execute the PrivComp protocol
to privately estimate the number of synchronized weights. If the result is ⊥,
indicating insufficient synchronization, the protocol returns to Step 2. Otherwise,
both parties output the set of synchronized weights wc as the shared secret key.

Figure 3. Neural key agreement protocol with privacy-preserving synchronization check.

Version November 30, 2025 submitted to Appl. Sci. 11 of 17

1. Attacker Initialization: The adversary A independently initializes the weights of its
own TPM:

wAji ∼ Unif{−L, . . . , L}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (22)

2. Local Computation: The attacker A observes the public input vector x used by the
legitimate parties and computes the activations of its hidden neurons and the output
of its TPM:

yAj = σ

(
N

∑
i=1

xjiwAji

)
, ∀j ∈ {1, . . . , K},

OA =
K

∏
j=1

yAj .

3. Synchronization Attempt: The attacker A monitors the outputs OP1 and OP2 ex-
changed between the legitimate parties. Whenever OP1 = OP2 = OA, the attacker
updates its weights according to the same Hebbian learning rule:

wAji ← wAji + OA xji Φ(yAj , OA), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (23)

4. Output: The attacker A continues this process for as long as P1 and P2 execute the
protocol. Upon termination, A outputs its current weight vector wA as its estimate of
the shared secret.

Figure 4. Naive attack against the neural key agreement protocol.

1. Attacker Initialization: The adversary A independently initializes the weights of its
TPM:

wAji ∼ Unif{−L, . . . , L}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}.

2. Local Computation: The attacker A observes the public input vector x and, for each
hidden unit j, computes:

pAj =
N

∑
i=1

xjiwAji , ∀j ∈ {1, . . . , K},

yAj = σ(pAj), ∀j ∈ {1, . . . , K},

OA =
K

∏
j=1

yAj .

3. Geometric Update: The attacker A observes the outputs OP1 and OP2 exchanged by
the legitimate parties and proceeds as follows:

If OP1 = OP2 = O and OA ̸= O :

Let j0 = arg min
j
|pAj | (the hidden neuron closest to its hyperplane).

Define the flipped hidden vector:

ỹAj =

{
−yAj if j = j0,

yAj otherwise
∀j ∈ {1, . . . , K}.

wAji ← wAji + OA xji Φ(ỹAj , OA), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}.

If OP1 = OP2 = O and OA = O :

wAji ← wAji + O xji Φ(yAj , O), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}.

4. Output: The attackerA repeats the above steps for as long as P1 and P2 are executing
the protocol. When the protocol terminates, A outputs its current weight vector wA.

Figure 5. Geometric attack against the neural key agreement protocol.

Version November 30, 2025 submitted to Appl. Sci. 12 of 17

5. Experiments 292

The experimental evaluation focuses on two key aspects of the neural key agreement 293

protocol: efficiency and security. Efficiency is measured in terms of the number of rounds 294

required for synchronization, while security is assessed by the percentage of the shared 295

key that can be recovered by an attacker. We consider two types of attacks: naive and 296

geometric [9]. While naive attacks generally pose little threat to neural key agreement 297

protocols, geometric attacks represent a significant vulnerability and are the primary reason 298

such protocols are not widely regarded as secure. In each experiment, we compare our 299

protocol to that of [16], which follows an identical message flow, with the only difference 300

being that synchronization steps (1–4) from Figure 3 are executed until all weights are 301

equal. For all experiments involving our protocol, we set the threshold τ = 128, reflecting 302

a realistic scenario in which an attacker would need to brute-force 2128 possible swap 303

configurations, as established in Theorem 2. 304

Efficiency: In the first set of experiments, we assess the efficiency of the protocol 305

with respect to K (the number of hidden neurons) and L (the range of weight values). For 306

both experiments, we fix N = 128 and M = 8. In the first experiment, with L = 16, we 307

compute the number of rounds required to synchronize the TPMs in 50 trials for each value 308

of K ∈ {3, 4, . . . , 12}, and report the average. Similarly, in the second experiment, with 309

K = 3, we average the number of rounds over 50 trials for each value of L ∈ {16, 17, . . . , 47}. 310

Figures 6 and 7 present the results for the classic protocol of [16], while Figures 8 and 9 311

show the results for our protocol. Although both protocols exhibit similar complexity with 312

respect to the weight range L, our protocol demonstrates superior efficiency as K increases. 313

Specifically, while the protocol of [16] exhibits exponential growth in the number of rounds 314

with increasing K, our protocol shows an exponential decrease. This improvement is 315

attributable to the early termination mechanism: as K increases, the parties reach the key 316

length threshold more rapidly, allowing the protocol to halt sooner. 317

Figure 6. Number of rounds vs K for the protocol of [16].

Version November 30, 2025 submitted to Appl. Sci. 13 of 17

Figure 7. Number of rounds vs L for the protocol of [16].

Figure 8. Number of rounds vs K for our protocol.

Version November 30, 2025 submitted to Appl. Sci. 14 of 17

Figure 9. Number of rounds vs L for our protocol.

Table 2. Comparison of average running time (in seconds) for key agreement between the Protocol
of [16] and our protocol, for various values of K.

K Protocol of [16] Our Protocol

3 0.03 0.22
4 0.05 0.22
5 0.13 0.24
6 0.37 0.20
7 0.83 0.20
8 1.69 0.18
9 3.81 0.16

To evaluate the practical efficiency of our proposed protocol, we conducted a series 318

of experiments comparing its average running time to that of the classic protocol of [16]. 319

The experiments were performed on a server equipped with an INTEL(R) XEON(R) GOLD 320

5512U processor (12 cores per socket) and 60 GB of RAM. Table 2 summarizes the average 321

running time (in seconds) required to achieve key agreement for both protocols, across a 322

range of values for the hidden layer size K. 323

As shown in the table, while the classic protocol is slightly faster for small values 324

of K, our protocol demonstrates a dramatic improvement in efficiency as K increases. 325

For example, at K = 9, our protocol achieves key agreement in an average of just 0.16 326

seconds, compared to 3.81 seconds for the protocol of [16]—a speedup of more than an 327

order of magnitude. This trend becomes increasingly pronounced for larger K, which is 328

of paramount importance for security, as higher values of K are known to significantly 329

enhance resistance against known attacks. These results highlight the practical advantage 330

of our protocol in scenarios where strong security is required. 331

Security: In the second set of experiments, we evaluate the resilience of both protocols 332

against naive and geometric attacks by measuring the proportion of the shared key that 333

an attacker can recover. For all security experiments, we set K = 3, a common choice in 334

Version November 30, 2025 submitted to Appl. Sci. 15 of 17

the literature [8,16]. In our protocol, the threshold for the shared key length is set to 180, 335

meaning that once 180 weights are synchronized, the protocol terminates. The success of an 336

attack is quantified as the synchronization percentage, defined as the ratio of the number of 337

weights correctly recovered by the attacker to the total length of the shared key. 338

Table 3 presents the results for the naive attack. As expected from prior work [8, 339

16], neural key agreement protocols are robust against naive attacks. This robustness 340

arises from the synchronization process itself: while the legitimate parties update their 341

weights only when their output neurons agree, the attacker can update only when all three 342

outputs coincide. This discrepancy allows the legitimate parties to synchronize before 343

the attacker can recover a significant portion of the key. Notably, since our protocol halts 344

synchronization once sufficient key material has been established, both the average and 345

maximum synchronization percentages for the attacker are lower compared to the protocol 346

of [16]. 347

The results for the geometric attack, shown in Table 4, reveal a stark contrast between 348

the two protocols. While the protocol of [16] yields an average attacker synchronization 349

percentage of 65.02%, our protocol limits this to only 6.90%. More importantly, the max- 350

imum synchronization percentage for the attacker reaches 100% in the classic protocol, 351

indicating that the attacker can occasionally recover the entire shared key. In contrast, the 352

maximum in our protocol is approximately 27%. Given that our shared key consists of 353

180 weights, even recovering 30% of the key still leaves the attacker with more than 126 354

unknown weights, corresponding to a brute-force search space of 2630 when L = 16. 355

Table 3. Comparison of synchronization percentages between the two protocols for k = 3 in the naive
attack.

Protocol Average (%) Maximum (%)

Protocol of [16] 9.75 28.32
Our Protocol 6.90 27.27

Table 4. Comparison of synchronization percentages between the two protocols for k = 3 in the
geometric attack.

Protocol Average (%) Maximum (%)

Protocol of [16] 65.02 100.00
Our Protocol 6.90 27.27

6. Conclusions and further directions of research 356

In this paper, we introduced a novel protocol that enables two parties engaged in a neu- 357

ral key agreement process to privately determine which weights have been synchronized 358

at intermediate stages. This capability allows the parties to terminate the synchronization 359

process as soon as sufficient key material has been established, thereby improving both the 360

efficiency and security of the protocol. We formally proved the correctness and security 361

of our approach and demonstrated how it can be seamlessly integrated into a neural key 362

agreement protocol. 363

Our experimental results show that the proposed protocol not only reduces the number 364

of rounds required for synchronization, but also significantly enhances security, particu- 365

larly against geometric attacks, the primary vulnerability in existing neural key agreement 366

schemes. By comparing our protocol to the state-of-the-art approach from [16], we demon- 367

strated substantial improvements: in our protocol, the number of rounds required for 368

synchronization decreases as the number of hidden units increases, whereas in the alter- 369

native protocol, this number grows exponentially. Furthermore, our protocol effectively 370

Version November 30, 2025 submitted to Appl. Sci. 16 of 17

mitigates the geometric attack, limiting the attacker’s ability to recover the shared key, 371

while the alternative protocol remains vulnerable to complete key recovery by an adversary. 372

While our results are promising, we do not claim that neural key agreement proto- 373

cols incorporating our privacy-preserving comparison procedure are ready for immediate 374

deployment in real-world scenarios. Rather, our work demonstrates that the main limita- 375

tion of such protocols, i.e., the vulnerability to geometric attacks, can be addressed. An 376

important direction for future research is to establish the security of these protocols within 377

a standard cryptographic framework, which remains an open challenge for all neural key 378

agreement protocols. 379

Author Contributions: Conceptualization, M.P.; methodology, M.P., F.I. and M.G.; software, M.I.; 380

validation, M.P., F.I. and M.G.; formal analysis, M.I.; investigation, M.I.; resources, M.I.; data curation, 381

M.I.; writing—original draft preparation, M.I.; writing—review and editing, M.P., F.I. and M.G.; 382

visualization, M.I.; supervision, F.I. and M.G.; project administration, M.I.; funding acquisition, N/A. 383

All authors have read and agreed to the published version of the manuscript. 384

References 385

1. Cohn-Gordon, K.; Cremers, C.; Dowling, B.; Garratt, L.; Stebila, D. A formal security analysis of 386

the signal messaging protocol. Journal of Cryptology 2020, 33, 1914–1983. 387

2. Goldreich, O. Foundations of cryptography: volume 2, basic applications; Cambridge university 388

press, 2009. 389

3. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a 390

quantum computer. SIAM Review 1999, 41, 303–332. 391

4. Peng, W.; Wang, B.; Hu, F.; Wang, Y.; Fang, X.; Chen, X.; Wang, C. Factoring larger integers with 392

fewer qubits via quantum annealing with optimized parameters. SCIENCE CHINA Physics, 393

Mechanics & Astronomy 2019, 62, 1–8. 394

5. Alagic, G.; Alagic, G.; Alperin-Sheriff, J.; Apon, D.; Cooper, D.; Dang, Q.; Liu, Y.K.; Miller, 395

C.; Moody, D.; Peralta, R.; et al. Status report on the first round of the NIST post-quantum 396

cryptography standardization process 2019. 397

6. Paquin, C.; Stebila, D.; Tamvada, G. Benchmarking post-quantum cryptography in TLS. In 398

Proceedings of the Post-Quantum Cryptography: 11th International Conference, PQCrypto 399

2020, Paris, France, April 15–17, 2020, Proceedings 11. Springer, 2020, pp. 72–91. 400

7. Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; 401

Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Advances in 402

optics and photonics 2020, 12, 1012–1236. 403

8. Kanter, I.; Kinzel, W.; Kanter, E. Secure exchange of information by synchronization of neural 404

networks. EPL (Europhysics Letters) 2002, 57, 141. 405

9. Klimov, A.; Mityagin, A.; Shamir, A. Analysis of neural cryptography. In Proceedings of 406

the International Conference on the Theory and Application of Cryptology and Information 407

Security. Springer, 2002, pp. 288–298. 408

10. Mislovaty, R.; Perchenok, Y.; Kanter, I.; Kinzel, W. Secure key-exchange protocol with an absence 409

of injective functions. Physical Review E 2002, 66, 066102. 410

11. Shacham, L.N.; Klein, E.; Mislovaty, R.; Kanter, I.; Kinzel, W. Cooperating attackers in neural 411

cryptography. Physical Review E 2004, 69, 066137. 412

12. Klein, E.; Mislovaty, R.; Kanter, I.; Ruttor, A.; Kinzel, W. Synchronization of neural networks by 413

mutual learning and its application to cryptography. Advances in Neural Information Processing 414

Systems 2004, 17. 415

13. Ruttor, A.; Kinzel, W.; Kanter, I. Neural cryptography with queries. Journal of Statistical 416

Mechanics: Theory and Experiment 2005, 2005, P01009. 417

14. Allam, A.M.; Abbas, H.M. Improved security of neural cryptography using don’t-trust-my- 418

partner and error prediction. In Proceedings of the 2009 International Joint Conference on 419

Neural Networks. IEEE, 2009, pp. 121–127. 420

Version November 30, 2025 submitted to Appl. Sci. 17 of 17

15. Allam, A.M.; Abbas, H.M. On the improvement of neural cryptography using erroneous 421

transmitted information with error prediction. IEEE transactions on neural networks 2010, 422

21, 1915–1924. 423

16. Stypiński, M.; Niemiec, M. Synchronization of Tree Parity Machines Using Nonbinary Input 424

Vectors. IEEE Transactions on Neural Networks and Learning Systems 2024, 35, 1423–1429. https: 425

//doi.org/10.1109/TNNLS.2022.3180197. 426

17. Jeong, S.; Park, C.; Hong, D.; Seo, C.; Jho, N. Neural cryptography based on generalized tree 427

parity machine for real-life systems. Security and Communication Networks 2021, 2021. 428

18. Dong, T.; Huang, T. Neural cryptography based on complex-valued neural network. IEEE 429

Transactions on Neural Networks and Learning Systems 2019, 31, 4999–5004. 430

19. Stypiński, M.; Niemiec, M. Impact of Nonbinary Input Vectors on Security of Tree Parity 431

Machine. In Proceedings of the Multimedia Communications, Services and Security: 11th 432

International Conference, MCSS 2022, Kraków, Poland, November 3–4, 2022, Proceedings. 433

Springer, 2022, pp. 94–103. 434

20. Salguero Dorokhin, É.; Fuertes, W.; Lascano, E. On the development of an optimal structure of 435

tree parity machine for the establishment of a cryptographic key. Security and Communication 436

Networks 2019, 2019. 437

21. Sarkar, A.; Sarkar, M. Tree parity machine guided patients’ privileged based secure sharing of 438

electronic medical record: cybersecurity for telehealth during COVID-19. Multimedia Tools and 439

Applications 2021, 80, 21899–21923. 440

22. Sarkar, A. Secure exchange of information using artificial intelligence and chaotic system guided 441

neural synchronization. Multimedia Tools and Applications 2021, 80, 18211–18241. 442

23. Gupta, M.; Gupta, M.; Deshmukh, M. Single secret image sharing scheme using neural cryptog- 443

raphy. Multimedia tools and applications 2020, 79, 12183–12204. 444

24. Plesa, M.I.; Gheoghe, M.; Ipate, F.; Zhang, G. A key agreement protocol based on spiking neural 445

P systems with anti-spikes. Journal of Membrane Computing 2022, pp. 1–11. 446

25. Young, A.R.; Dean, M.E.; Plank, J.S.; Rose, G.S. A review of spiking neuromorphic hardware 447

communication systems. IEEE Access 2019, 7, 135606–135620. 448

26. Ruttor, A.; Kinzel, W.; Kanter, I. Dynamics of neural cryptography. Physical Review E 2007, 449

75, 056104. 450

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are 451

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). 452

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from 453

any ideas, methods, instructions or products referred to in the content. 454

https://doi.org/10.1109/TNNLS.2022.3180197
https://doi.org/10.1109/TNNLS.2022.3180197
https://doi.org/10.1109/TNNLS.2022.3180197

	Introduction
	Related Work
	Our Contribution

	Tree Parity Machine
	Weights Comparison Algorithm
	Neural Key Agreement Protocol
	Experiments
	Conclusions and further directions of research
	References

