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Abstract

Key agreement protocols based on neural synchronization with Tree Parity Machines
(TPMs) offer promising security advantages: they do not rely on trapdoor functions, mak-
ing them resistant to quantum attacks, and they avoid the need for specialized hardware
required by quantum-based schemes. Nevertheless, these protocols face a significant vul-
nerability: the large number of public message exchanges required for synchronization
increases the risk that an attacker, acting as a Man-in-the-Middle, can successfully syn-
chronize their own TPMs with those of the legitimate parties and ultimately recover the
shared key. Motivated by the need to reduce this risk, we propose a novel probabilistic
protocol that enables two parties to securely estimate the size of the shared key during
intermediate steps, without revealing any key material. This estimation allows the protocol
to terminate as soon as sufficient key material has been established, thereby reducing the
number of synchronization rounds and limiting the opportunity for an attacker to synchro-
nize. We integrate our estimation mechanism into a neural key agreement protocol and
evaluate its performance and security, demonstrating improved efficiency and enhanced
resistance to attacks compared to existing approaches. The implementation is available at
https://github.com /miiip /Neural-Key- Agreement-.

Keywords: Neural cryptography; Key agreement; Tree Parity Machine; Cryptography

1. Introduction

Key agreement protocols are fundamental to the security of modern cryptographic
systems. From securing web traffic via the TLS protocol to enabling end-to-end encrypted
messaging platforms such as Signal, the majority of cryptographic applications depend on
robust key agreement mechanisms [1]. The primary objective of these protocols is to estab-
lish a shared secret between two or more parties over potentially insecure communication
channels.

Traditionally, most key agreement protocols rely on hard number-theoretic problems,
including the discrete logarithm problem (DLP), the Diffie-Hellman problem (DHP), the
decisional Diffie-Hellman problem (D-DHP), and the integer factorization problem [2]. A
significant drawback of these approaches is their susceptibility to attacks by large-scale
quantum computers. Shor’s seminal work [3] introduced a quantum algorithm capable of
solving both the DLP and the factorization problem in polynomial time. Although quantum
computers of sufficient scale do not yet exist to threaten widely deployed cryptographic
protocols, it is widely anticipated that such technology will emerge in the foreseeable
future [4].
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In response to these challenges, three principal alternatives to conventional key agree-
ment protocols have been developed:

1.  Post-quantum key agreement protocols,
2. Quantum key agreement protocols,
3. Neural key agreement protocols.

Post-quantum key agreement protocols are based on mathematical problems for which
no efficient solution is known on either classical or quantum computers [5]. However, these
schemes often involve computationally intensive operations over finite fields, which can
hinder their practical deployment [6]. Quantum key agreement protocols, on the other
hand, leverage quantum phenomena such as wave function collapse, entanglement, and
the no-cloning theorem [7]. While these protocols provide strong security guarantees even
against quantum adversaries, they require specialized hardware that is both costly and
challenging to maintain.

Neural key agreement protocols, first introduced in [8], offer an alternative to both
quantum and post-quantum approaches. The core concept involves synchronizing the
weights of two neural networks, specifically Tree Parity Machines (TPMs), through iterative
updates between the communicating parties. The resulting synchronized weights are then
used as a shared secret key. Unlike post-quantum protocols, whose security is predicated
on mathematical problems that may eventually be solved, or quantum protocols, which
necessitate dedicated and expensive hardware, neural key agreement protocols do not rely
on such assumptions or infrastructure.

A central challenge in neural key agreement protocols is the large number of rounds
typically required for two parties to achieve full synchronization of their TPMs. In existing
protocols, the process continues until the entire set of weights is identical, at which point
the shared key is established. However, this approach leads to a substantial communication
overhead and, more critically, increases the risk that an adversary can synchronize their
own TPM with those of the legitimate parties by observing the public exchanges [9]. This
vulnerability is exacerbated as the number of rounds grows, since each additional round
provides further opportunities for an attacker to align their weights.

It is important to note that the weight vector of a TPM generally contains far more
elements than the length required for a standard cryptographic key (e.g., 128 bits). This
observation suggests that it is not necessary to wait for complete synchronization; the
protocol could be terminated once a sufficient number of weights have been aligned to
provide the desired level of security. Early termination would not only reduce the number
of communication rounds—thereby improving efficiency—but also significantly limit the
window in which an attacker might succeed in synchronizing their own TPM.

The main obstacle to implementing early termination is the lack of a secure mechanism
for the parties to determine the extent of synchronization without revealing any information
about the actual weights. Without such a mechanism, the parties cannot safely assess
whether enough key material has been established to halt the protocol. To address this
limitation, we introduce a privacy-preserving comparison protocol that enables the two
parties to securely estimate the number of synchronized weights after each round, without
disclosing the weight values themselves. By integrating this mechanism into the neural key
agreement protocol, we enable secure early termination based on the amount of shared key
material, thereby enhancing both the efficiency and the security of the protocol.

1.1. Related Work

The concept of employing neural synchronization for key agreement protocols was
first introduced by Kanter et al. [8], who proposed a method enabling two parties to syn-
chronize the weights of their respective three-layer neural networks, known as Tree Parity
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Machines (TPMs), over a public channel. This approach was designed to prevent any &
third party from reconstructing the weights, even with access to all exchanged information. s
Shortly thereafter, Klimov et al. [9] identified three classes of attacks against this protocol,
demonstrating through extensive experimentation that a geometric attack could allow an &
adversary to recover up to 90% of the shared key. In response to these vulnerabilities, Mislo- &
vaty et al. [10] provided experimental evidence that increasing the range of possible weight &
values can enhance the protocol’s security. Nevertheless, Shacham et al. [11] subsequently
introduced a more advanced attack that remains effective even when the weight rangeis o
expanded, underscoring the persistent challenges in securing neural synchronization-based
protocols. 0

To further strengthen the security of neural key agreement protocols, a variety of
alternative strategies have been explored [12]. For instance, Ruttor et al. [13] proposed s
dynamically generating TPM inputs based on the current internal state of the network, s
thereby increasing the unpredictability of the synchronization process. In a different o
approach, Allam et al. [14,15] developed algorithms that perturb the TPM output, making s
it more difficult for adversaries to reconstruct the original information while still enabling o
legitimate parties to achieve synchronization. Although these methods enhance security 10
under the assumption that an eavesdropper can intercept all public communications, they 1
often result in increased synchronization times. 102

Recent research has also focused on novel TPM architectures and input representations. 10
Stypinski et al. [16] introduced nonbinary input values to accelerate protocol execution, 10
while Jeong et al. [17] demonstrated that vector-valued inputs can further improve both 105
efficiency and security. Similarly, Dong et al. [18] investigated the use of complex-valued 105
inputs in TPMs. The security implications of nonbinary inputs were systematically analyzed 1o
by Stypinski et al. [19], providing deeper insights into the robustness of these protocols. In 10
addition to architectural innovations, parameter selection for TPMs has been systematically 100
studied by Salguero et al. [20], who analyzed various parameter sets and reported their 10
effects on both synchronization time and security. 11

Beyond theoretical advancements, several studies have examined practical applica- 12
tions of neural cryptography. For example, Sarkar et al. [21] utilized TPM-based mecha- 1
nisms to enable secure access to medical data, while Sarkar et al. [22] developed a chaos- 14
based neural synchronization method for secret sharing within a public-key framework. us
Gupta et al. [23] applied neural cryptography to the secure distribution of image shares. s
Additionally, Plesa et al. [24] proposed a TPM architecture based on spiking neural net- 1
works, evaluating its performance and resilience to man-in-the-middle attacks. Notably, the 1
efficiency gains of this protocol are most pronounced when implemented on neuromorphic o
hardware [25]. 120

Table 1 provides a comparison of the main TPM-based key agreement protocols, 1
highlighting their core ideas, advantages, and limitations relative to our proposal. 122



Version November 30, 2025 submitted to Appl. Sci.

40f17

Table 1. Comparison of TPM-based key agreement protocols.

Core Idea /

Limitations /

Protocol Modification Advantages Comparison to Our
Protocol
Original TPM . Vulnerable to
N Simple, does not geometric attacks;
synchronization
Kanter et al. [8] rely on trapdoor no early
protocol over . o
: functions termination
public channel .
mechanism

Mislovaty et al. [10]

Increased weight
range to improve

Reduces success
rate of some attacks

Still vulnerable to
advanced attacks;

security no protocol-level fix
o Increases
Dynamic input Increases svnchronization
Ruttor et al. [13] generation based unpredictability, 5y
. . . time; more complex
on internal state improves security . .
implementation
1
Output Harder for attacker S nclslrggii; ton:
Allam et al. [14,15] perturbation to to reconstruct y !
. - more rounds
confuse adversaries weights )
required
Nonbinary input Faster Sz;unati’aifg;?gs
Stypinski et al. [16] y P synchronization, P !

vectors for TPMs

improved efficiency

geometric attacks
still possible

Jeong et al. [17]

Vector-valued
inputs for TPMs

Improves efficiency
and security

Implementation
complexity; not
immune to all
attacks

Novel input

Security analysis

Complex-valued representation; limited; practical
Dong et al. [18] TPMs potential for higher deployment
security unclear
Parameter Systematic study of  Does not address
Salguero et al. [20] optimization for security vs. protocol-level
TPMs efficiency trade-offs vulnerabilities
Spiking neural Improved eff1c1er}cy Securlt}{ against
Plesa et al. [24] on neuromorphic geometric attacks
network TPMs
hardware not fully resolved
s Readily integrates
Privacy-preserving Significantly with existing TPM
o reduces rounds;
synchronization ) frameworks; offers
Our Protocol . effectively C .
check with early . . promising potential
o mitigates geometric .
termination attacks for practical

deployment

1.2. Our Contribution

The primary contributions of this study are summarized as follows:

1. We introduce a novel probabilistic algorithm that allows two parties engaged in a
neural key agreement protocol to privately compute the proportion of synchronized

weights at intermediate stages, without revealing the actual weight values.

2. Leveraging this algorithm, we develop a new key agreement protocol based on the

non-binary TPM model proposed by [16].
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3. We perform a comprehensive security analysis of our protocol, evaluating its resilience
against both naive and geometric attacks, and benchmark its robustness against the
protocol presented in [16].

4. We empirically demonstrate the efficiency of our protocol by analyzing its complexity
in terms of the number of rounds required for synchronization, as a function of the
number of hidden units in the TPM and the weight range, and compare these results
with those of [16].

The remainder of the paper is organized as follows. Section 2 introduces the Tree Parity
Machine (TPM) model, providing the necessary background as described in [16]. Our main
technical contributions begin in Section 3, where we present our novel algorithm for privacy-
preserving weight comparison. Section 4 builds on this by detailing our proposed neural
key agreement protocol, which integrates the privacy-preserving mechanism. In Section 5,
we provide a comprehensive experimental evaluation of our protocol, analyzing both its
security and efficiency compared to existing approaches. Finally, Section 6 concludes the
paper and discusses directions for future research.

2. Tree Parity Machine

The Tree Parity Machine (TPM) model utilized in this study, as originally introduced
by [16], is a three-layer neural network consisting of an input layer, a hidden layer, and
an output layer. The input layer is partitioned into K groups, each comprising N neurons.
Each neuron within a group is connected to a corresponding neuron in the hidden layer,
and all hidden neurons are collectively connected to a single output neuron.

The network inputs, denoted by Xji forl1 <i < Nand1 <j <K, are integer values
constrained by —M < x;; < M, where M € Z. The synaptic weights connecting the input
and hidden layers, represented as wj;, are also integers, bounded by —L < wiji < L, with
LeZ.

The activation of each hidden neuron, y;, is computed by applying the sign function
to the weighted sum of its inputs:

N
yi = U(Z xjiwji>/ 1)
i=1

where o (x) denotes the sign function.
The output neuron, denoted by O, calculates the product of the activations of all
hidden neurons:

O=]ly )

—

j=1

The weights of the network are updated according to the Hebbian learning rule, as

described in [26]:
Wjj = Wi +Ox]‘iCD(]/]‘,O), 3)

where
*  wj; is the weight of the i-th input to the j-th hidden neuron,
*  xj; is the corresponding input value,
* y;is the output of the j-th hidden neuron,

*  Ois the global output of the TPM,
e  ®(a,b) is the indicator function:

®(a,b) 1, ifa=1b,
a,b) =
0, otherwise.
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Figure 1 illustrates the structure of the TPM. 168

Figure 1. The structure of a Tree Parity Machine.

3. Weights Comparison Algorithm 160

Consider two parties, P; and P», participating in a neural key agreement protocol. 17
Let w1 and w”2 denote the respective KN-dimensional weight vectors of their TPMs. The 1
proposed comparison protocol, PrivComp, enables the parties to privately compute not iz
only the number of synchronized weights, but also to identify which specific weights have 1
been synchronized, without revealing the actual values of the weights to any external 17
observer. This is achieved under the honest-but-curious security model, where both parties 175
are assumed to follow the protocol correctly, but an adversary may passively intercept 17
all messages exchanged during PrivComp in an attempt to infer the secret weights. The 1
protocol proceeds as follows: 178

Initially, P; constructs a vector d' by flattening its weight matrix w”1, and generatesa 1
decoy vector d? of the same length, where each entry is independently sampled from the 1
range —L < dlz < L. For each position 1 <i < KN, P; randomly decides whether to swap 1
the values of d} and d?, thereby obscuring the correspondence between the actual weights 1
and the decoy elements. After performing these random swaps, P; transmits both d' and 13
dZ to Pz. 184

Upon receiving the vectors, P, compares each of its own weights with the correspond- 1
ing entries in d' and d?. Specifically, P, constructs a binary vector mask, where mask; = 1if 1
wlpz matches either d} or d?, and mask; = 0 otherwise. The Hamming weight S of the mask 1
vector, representing the number of matches, is then computed. If S exceeds a predefined s
security threshold 7, P, returns the mask vector to P;; otherwise, the protocol terminates  1a
with output L. 190

An adversary intercepting the vectors sent by P; cannot deduce the actual weights, as 11

the random swapping introduces 2KV

possible configurations. Although the mask vector 1
could potentially reduce the brute-force search space by indicating positions of possible 10
matches, the threshold T ensures that an attacker must still consider at least 27 possibilities, 10
thereby preserving the desired level of security. 195

The underlying intuition is that, due to the synchronization process, the probability 19
that P, observes a match at position i without the actual weights being synchronized is 17
low. Consequently, if mask; = 1, it is highly likely that the corresponding weights are 10
synchronized. 199

The output of the PrivComp protocol is the common set weights, or L if the number of 200
matches is below the threshold 7. 201

The following theorems establish the correctness and security of our construction. 202
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1. Decoy Generation: P initializes d' with its actual weights w” and generates a
decoy vector d?, where each entry is sampled uniformly from the weight range:
dl —w,  Vie{l,... KN} (4)

d? ~ Unif{—L,~L+1,...,L}, Vie{l,...,KN} (5)

2. Random Swapping and Transmission: P; generates a random binary vector sw,
where each entry is sampled uniformly from {0,1}. For each index i, if sw; = 1,
the entries d! and d? are swapped. Both vectors are then sent to P:

sw; ~ Unif{0,1}, Vie{l,...,KN} (6)
(d},d?) « (d2,d)),  ifsw; =1 @)
P1— Py (d',d?) ®)

3.  Comparison: P, compares each of its weights wlpz with d} and d?, constructing
the mask vector:

o P
1 il e {dl )

mask([i] = { Vie {1,...,KN} 9)

0, otherwise

4.  Threshold Verification and Response: P, computes S = Zg\{ mask[i]. If S > T,
P, returns the mask vector to P;:

IfS>1t, P, — P;:mask (10)
5. Output: If S > T, both parties output the set of synchronized weights:
¢ [P 11 — [F2 N —
w® = {w; ' | mask[i] =1} = {w;? | mask[i] = 1}.

Otherwise, both parties output L.

Figure 2. The PrivComp protocol for privacy-preserving weight comparison.

Theorem 1 (Correctness). Let w™, w2 € {—L,..., L}¥N denote the weight vectors of parties 203
Py and Py. Let d*, d? be constructed as specified in the protocol, and let mask € {0, 1}XN be the 2

output of Py. Then, for any positioni € {1,...,KN}: 205
1. If wlpl # wlPZ, the probability that mask; = 1 (i.e., a false positive) is at most 2L2ﬁ 206
2. I wlpl = wlpz, then mask; = 1 with probability 1 (i.e., a true positive). 207
Proof. Fix any positioni € {1,...,KN}. 208

Case 1: wlpl # wIPZ (False Positive Probability). 200

According to the protocol, for each index i, one of {d},d?} contains the true value wzpl , 210

while the other contains a randomly generated decoy. The assignment is governed by the 2
swap bit sw;: if sw; = 0, then d} = w?l and dlz is a decoy; if sw; = 1, then d% = w?l and d} 212

isa decoy. 213
Let r be the random decoy sampled uniformly from {—L,...,L}. 214
There are two cases, each occurring with probability 1/2: 215

e With probability 1/2, (d},d2) = (w! ", 7).

e With probability 1/2, (d},d2) = (r,w’").

P>

In both cases, w; ? can match d or d? only if wle = r (since wlPl # wle by assumption). 218
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Since r is uniformly distributed over 2L + 1 values, the probability that r = wlpz is 2w
1
m. 220
There are two opportunities (either d} or d?), so by the union bound, the probability 2
P ; 1 2 5 1 2
that w; > matches either d; or di is at most 2 - 5 = 5777 2
Case 2: wlpl = wlpz (True Positive Probability). 223
Py

Regardless of the value of sw;, either d} or d? will be equal to w 224

i
Therefore, wlpz will always match at least one of d} or 42, so mask; = 1 with probability 2

1 . D 226

Theorem 2 (Security). Let Py send the vectors d',d> € {—L,...,L}N to P, as specified in the 2
protocol, where each position is randomly swapped. Let mask € {0, 1}XN be the binary vector sent 2
by P, to Py only if the number of 1s in mask is at least T. Then, for any eavesdropper intercepting s
the communication: 230

1. Before mask is sent, the eavesdropper must consider all 2XN possible swap configurations to 2
recover the real weights of P. 232
2. After mask is sent, the eavesdropper must consider at least 2 possible swap configurations. s

In both cases, the attacker faces an exponential search space in the relevant parameter. 234

Proof. (1) Security Before mask is Sent: 235
When P; sends d' and d?, each entry is either the real weight or a random decoy, s
determined by the secret swap vector sw € {0,1}XN. For each position i, the attacker does  2»r
not know whether dl.1 or d% is the real weight. Thus, to recover the real weight vector, the 2z
attacker must guess the entire swap vector sw, which has 2KV possible configurations. 239
(2) Security After mask is Sent: 240
When P, sends the mask vector mask, the attacker learns which positions i have a  2u
match with P,’s weights. For each position i where mask; = 1, the real weight of P; could 2
be either d} or dlz. For positions where mask; = 0, the attacker knows neither value is the 2
real weight, so these positions can be ignored in the brute-force search. 244
Let S be the number of bits of 1 in the mask. The attacker must guess the swap bits s
for these S positions, resulting in 2° possible configurations. By protocol, S > T, so the s
brute-force complexity is at least 27. 247
Conclusion: In both cases, the attacker must consider an exponential number of s

possible swap configurations, either 2KN or at least 27, to recover the real weights. This s
ensures the protocol’s security against brute-force attacks by an eavesdropper. O 250
4. Neural Key Agreement Protocol 251

In this section, we present the neural key agreement protocol, which incorporates our 2
privacy-preserving comparison protocol, PrivComp, to securely determine the extent of s
synchronization between the parties. The protocol is detailed in Figure 3. All computa- 2
tions, including weight updates, are performed within the range [—L, L] with appropriate  2ss
clipping. 256

The proposed protocol follows the general architecture of neural key agreement 27
schemes, as outlined in [8,16]. Its primary innovation, however, is the integration of a 2
privacy-preserving comparison protocol, which allows the participating parties to terminate 2
the synchronization process as soon as a sufficient number of weights have been aligned. 2o
This enhancement not only increases the protocol’s efficiency by reducing the number of 2
required rounds, but also significantly improves its security. As noted in [9], the probability 2
that an adversary can successfully synchronize a third TPM with those of the legitimate 2
parties grows with the number of rounds observed. By minimizing unnecessary rounds, 2
the protocol effectively mitigates this risk. 265
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Regarding correctness, it has been established in [8] that two TPMs will eventually 2
synchronize, as the process can be modeled as a random walk within a finite weight space. 2
Each party updates its weights only when the outputs of the corresponding hidden neurons 2
are identical. This selective update rule ensures that the weight vectors do not diverge, but 2
instead gradually converge towards synchronization. In essence, updates are performed 2w
exclusively under conditions that promote alignment, thereby guaranteeing convergence 2.
of the protocol. e

There are two principal types of attacks on neural key agreement protocols, both 27
of which are relevant in the context of the honest-but-curious adversarial model. In this 2
model, the adversary is assumed to have full access to all messages exchanged over the s
public channel and may attempt to infer secret information by passively observing the 2z
protocol, but does not deviate from the prescribed protocol steps or actively interfere with 2
the communication. 278

In a naive attack (illustrated in Figure 4), the honest-but-curious adversary attempts  2r
to synchronize its own TPM with those of the legitimate parties by simply following the 2
same protocol as the participants. The success of such an attack is directly influenced 2
by the number of synchronization rounds observed, which highlights the importance of 2
minimizing protocol duration to limit the adversary’s opportunity for synchronization. 263

In a geometric attack, the adversary leverages additional information from the protocol 2
execution to improve its chances of synchronization, even when its own output does not 2
match those of the legitimate parties. Specifically, when the attacker’s output differs, the 2
adversary identifies the hidden neuron whose associated weights are closest to the input 2
hyperplane and selectively flips its activation. This advanced technique, introduced by [9], 2
allows the honest-but-curious adversary to make progress toward synchronization despite  2s
output mismatches, thereby posing a more significant threat than the naive attack. The 20
geometric attack is detailed in Figure 5. 201
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Parameter Setup and Initialization: The parties P; and P, agree on the protocol
parameters K, N, M, L, and independently initialize their TPM weights uniformly
at random:

P . .

w][l ~ Unif{-L,...,L}, v(,i)e{1,..., K} x{1,...,N}, (11)
P . .

wjiZNUnlf{—L,...,L}, V(i) e{1,..., K} x{1,...,N}. (12

Input Generation: Both parties agree on a common random input vector x, either
by exchanging the vector directly or by sharing a common random seed:

xji ~ Unif{—M, ..., M}, v(j,i)e{1,..., K} x{1,...,N}. (13)
Computation and Output Exchange: Each party computes the activations of the

hidden neurons and the TPM output, then exchanges the output value with the
other party:

m_<2% ), viel,. . K, (14)

Pz _g<2xﬂ w; ) vje{1,...,K}, (15)
Py K P1
o =11y (16)
j=1
T 17
j=1
OP1 5 02, (18)

Weight Update: If the outputs coincide, each party updates its weights according
to the Hebbian learning rule, but only for those hidden neurons whose activation
matches the global output:

If OP1 = 02 = O, then (19)

Wil Wi+ 0x; D(y1,0), V(i) €{l,... K} x{1,...,N},  (20)

P P P .
wji2 <—wﬁ2+Ole-<I>(yj 2,0), V(ji)e{1,...,K} x{1,...,N} (21)
Synchronization Check and Output: Both parties execute the PrivComp protocol
to privately estimate the number of synchronized weights. If the result is L,
indicating insufficient synchronization, the protocol returns to Step 2. Otherwise,
both parties output the set of synchronized weights w* as the shared secret key.

Figure 3. Neural key agreement protocol with privacy-preserving synchronization check.
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Attacker Initialization: The adversary A independently initializes the weights of its
own TPM:

wfl ~ Unif{~L,...,L}, v(j,i) e {1,...,K} x {1,...,N}. (22)

Local Computation: The attacker A observes the public input vector x used by the
legitimate parties and computes the activations of its hidden neurons and the output
of its TPM:

N
yﬁ:a’(ijiwﬁt>, VjE {1,..,,K},
i=1

K
oA = Hy]A
j=1

Synchronization Attempt: The attacker .4 monitors the outputs Ot and 07 ex-

changed between the legitimate parties. Whenever O™ = 072 = 04, the attacker
updates its weights according to the same Hebbian learning rule:

wi —wil + 04y @y, 04), V(i) e {l,... K} x{1,...,N}. (23)

Output: The attacker A continues this process for as long as P; and P, execute the

protocol. Upon termination, A outputs its current weight vector wA as its estimate of
the shared secret.

Figure 4. Naive attack against the neural key agreement protocol.

1.

2.

3.

4.

Attacker Initialization: The adversary A independently initializes the weights of its
TPM:

wf ~Unif{~L,...,L}, V(j,i)€{1,...,K} x{1,...,N}.

Local Computation: The attacker A observes the public input vector x and, for each
hidden unit j, computes:

N
p]*4 = Zx/iw;?, vie{l,...,K},
i=1

y]*4 = U(p]»A), vie{1,...,K},

Geometric Update: The attacker .A observes the outputs O”' and O”2 exchanged by
the legitimate parties and proceeds as follows:

0P =0" =0and 0 £ O :

A

Let jo = argmin |p i | (the hidden neuron closest to its hyperplane).
]

Define the flipped hidden vector:

A i
gf‘:{ S RIEe e, k)

y]A otherwise

wi — wif + 04 x; (5,01, V(i) e{1,..., K} x {1,...,N}.

0P =0 =0and 04 =0

wi — wil + 0x; ®(y',0), V(j,i) e{1,..., K} x {1,...,N}.

Output: The attacker A repeats the above steps for as long as P; and P, are executing
A

the protocol. When the protocol terminates, A outputs its current weight vector w-*.

Figure 5. Geometric attack against the neural key agreement protocol.
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5. Experiments

The experimental evaluation focuses on two key aspects of the neural key agreement
protocol: efficiency and security. Efficiency is measured in terms of the number of rounds
required for synchronization, while security is assessed by the percentage of the shared
key that can be recovered by an attacker. We consider two types of attacks: naive and
geometric [9]. While naive attacks generally pose little threat to neural key agreement
protocols, geometric attacks represent a significant vulnerability and are the primary reason
such protocols are not widely regarded as secure. In each experiment, we compare our
protocol to that of [16], which follows an identical message flow, with the only difference
being that synchronization steps (1-4) from Figure 3 are executed until all weights are
equal. For all experiments involving our protocol, we set the threshold T = 128, reflecting
a realistic scenario in which an attacker would need to brute-force 2!?® possible swap
configurations, as established in Theorem 2.

Efficiency: In the first set of experiments, we assess the efficiency of the protocol
with respect to K (the number of hidden neurons) and L (the range of weight values). For
both experiments, we fix N = 128 and M = 8. In the first experiment, with L = 16, we
compute the number of rounds required to synchronize the TPMs in 50 trials for each value
of K € {3, 4,..., 12}, and report the average. Similarly, in the second experiment, with

K = 3, we average the number of rounds over 50 trials for each value of L € {16,17,...,47}.

Figures 6 and 7 present the results for the classic protocol of [16], while Figures 8 and 9
show the results for our protocol. Although both protocols exhibit similar complexity with

respect to the weight range L, our protocol demonstrates superior efficiency as K increases.

Specifically, while the protocol of [16] exhibits exponential growth in the number of rounds
with increasing K, our protocol shows an exponential decrease. This improvement is
attributable to the early termination mechanism: as K increases, the parties reach the key
length threshold more rapidly, allowing the protocol to halt sooner.

TPM Synchronization: Rounds vs K (M=8, L=16, N=1024)

400000 A

y=125.67e*0-67x _ 4091.32 ;"
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250000 A 4
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100000 A v
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__‘...--""" ® Average rounds
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K (number of hidden units)

Figure 6. Number of rounds vs K for the protocol of [16].
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TPM Synchronization: Rounds vs L (M=8, K=3, N=1024)
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Figure 7. Number of rounds vs L for the protocol of [16].

TPM Synchronization: Rounds vs K (M=8, L=16, N=1024)
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Figure 8. Number of rounds vs K for our protocol.
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TPM Synchronization: Rounds vs L (M=8, K=3, N=1024)
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Figure 9. Number of rounds vs L for our protocol.

Table 2. Comparison of average running time (in seconds) for key agreement between the Protocol
of [16] and our protocol, for various values of K.

K Protocol of [16] Our Protocol
3 0.03 0.22
4 0.05 0.22
5 0.13 0.24
6 0.37 0.20
7 0.83 0.20
8 1.69 0.18
9 3.81 0.16

To evaluate the practical efficiency of our proposed protocol, we conducted a series

of experiments comparing its average running time to that of the classic protocol of [16].

The experiments were performed on a server equipped with an INTEL(R) XEON(R) GOLD
5512U processor (12 cores per socket) and 60 GB of RAM. Table 2 summarizes the average
running time (in seconds) required to achieve key agreement for both protocols, across a
range of values for the hidden layer size K.

As shown in the table, while the classic protocol is slightly faster for small values

of K, our protocol demonstrates a dramatic improvement in efficiency as K increases.

For example, at K = 9, our protocol achieves key agreement in an average of just 0.16
seconds, compared to 3.81 seconds for the protocol of [16]—a speedup of more than an
order of magnitude. This trend becomes increasingly pronounced for larger K, which is
of paramount importance for security, as higher values of K are known to significantly
enhance resistance against known attacks. These results highlight the practical advantage
of our protocol in scenarios where strong security is required.

Security: In the second set of experiments, we evaluate the resilience of both protocols
against naive and geometric attacks by measuring the proportion of the shared key that
an attacker can recover. For all security experiments, we set K = 3, a common choice in
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the literature [8,16]. In our protocol, the threshold for the shared key length is set to 180,
meaning that once 180 weights are synchronized, the protocol terminates. The success of an
attack is quantified as the synchronization percentage, defined as the ratio of the number of
weights correctly recovered by the attacker to the total length of the shared key.

Table 3 presents the results for the naive attack. As expected from prior work [8,
16], neural key agreement protocols are robust against naive attacks. This robustness
arises from the synchronization process itself: while the legitimate parties update their
weights only when their output neurons agree, the attacker can update only when all three
outputs coincide. This discrepancy allows the legitimate parties to synchronize before
the attacker can recover a significant portion of the key. Notably, since our protocol halts
synchronization once sufficient key material has been established, both the average and
maximum synchronization percentages for the attacker are lower compared to the protocol
of [16].

The results for the geometric attack, shown in Table 4, reveal a stark contrast between
the two protocols. While the protocol of [16] yields an average attacker synchronization
percentage of 65.02%, our protocol limits this to only 6.90%. More importantly, the max-
imum synchronization percentage for the attacker reaches 100% in the classic protocol,
indicating that the attacker can occasionally recover the entire shared key. In contrast, the
maximum in our protocol is approximately 27%. Given that our shared key consists of
180 weights, even recovering 30% of the key still leaves the attacker with more than 126
unknown weights, corresponding to a brute-force search space of 29 when L = 16.

Table 3. Comparison of synchronization percentages between the two protocols for k = 3 in the naive
attack.

Protocol Average (%) Maximum (%)
Protocol of [16] 9.75 28.32
Our Protocol 6.90 27.27

Table 4. Comparison of synchronization percentages between the two protocols for k = 3 in the
geometric attack.

Protocol Average (%) Maximum (%)
Protocol of [16] 65.02 100.00
Our Protocol 6.90 27.27

6. Conclusions and further directions of research

In this paper, we introduced a novel protocol that enables two parties engaged in a neu-
ral key agreement process to privately determine which weights have been synchronized
at intermediate stages. This capability allows the parties to terminate the synchronization
process as soon as sufficient key material has been established, thereby improving both the
efficiency and security of the protocol. We formally proved the correctness and security
of our approach and demonstrated how it can be seamlessly integrated into a neural key
agreement protocol.

Our experimental results show that the proposed protocol not only reduces the number
of rounds required for synchronization, but also significantly enhances security, particu-
larly against geometric attacks, the primary vulnerability in existing neural key agreement
schemes. By comparing our protocol to the state-of-the-art approach from [16], we demon-
strated substantial improvements: in our protocol, the number of rounds required for
synchronization decreases as the number of hidden units increases, whereas in the alter-
native protocol, this number grows exponentially. Furthermore, our protocol effectively
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mitigates the geometric attack, limiting the attacker’s ability to recover the shared key, s
while the alternative protocol remains vulnerable to complete key recovery by an adversary. sz

While our results are promising, we do not claim that neural key agreement proto- s
cols incorporating our privacy-preserving comparison procedure are ready for immediate s
deployment in real-world scenarios. Rather, our work demonstrates that the main limita- sz
tion of such protocols, i.e., the vulnerability to geometric attacks, can be addressed. An
important direction for future research is to establish the security of these protocols within s
a standard cryptographic framework, which remains an open challenge for all neural key sz
agreement protocols. 379
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